Fran Herr

University of Chicago

Fran Herr

University of Chicago

- examples of foliated 3-manifolds
- taut and depth one foliations
- Leafwise branched coverings

$$M_{f} := S \times [0,1]$$

(x,1) ~ (f(x),0)

$$M_{f} := S \times [0,1]$$

(x,1) ~ (f(x),0)

poliation on Mf is
$$\xi S \times t 3$$

La finite surface fe MCG(Eg) Mf torus Map • f(x) C

La finite surface f E MCG(Eq) MA torus

S énfinite - type surface f c MCG(S) end-periodic Compactified mapping torus \sim

End-periodic mapping tori S infinite-type surface & end-periodic homeo⁺

End-periodic mapping tori S infinite-type surface & end-periodic homeo+

9

"Shift map"

End-periodic mapping tori S infinite-type surface b b end-periodic homeo⁺ L» "looks like" o on the ends end end "Shift map"

End-periodic mapping tori S infinite-type surface Q end-periodic homeo+ La "looks like" o on the ends \rightarrow $f = \sigma \circ q$ > supported in K

End-periodic mapping tori S infinite-type surface end-periodic homeo⁺ $E \times : f = 0 \circ T \propto$ ħ \propto \sim (\sim)

End-periodic mapping tori S infinite-type surface $f end periodic homeo^+$ $E \times : f = 0 \circ T_{\alpha}$ \propto $\langle \rangle$ \sim "Attracting end" "Repelling end"

End-periodic mapping tori S infinite-type surface $\begin{cases}
end - periodic homeo^+ \\
\underline{Ex} : & f = \sigma \circ \overline{T_{\alpha}}
\end{cases}$ Mf mapping torus $5 \times [0, 1]$ (x, 1) ~ (f(x), 0) Mf =

End-periodic mapping tori S infinite-type surface f end-periodic homeo⁺ Ex: f= 0 o Ta Mf mapping torus 5 × [0,1] Mf = COMPACTIF $(x, 1) \sim (f(x), 0)$ My = My U U+/23 U U-/247

End-periodic mapping tori S infinite-type surface ADD M IN! end-periodic homeo⁺ $E \times : f = 0 \circ T_{\alpha}$ Mf mapping torus $S \times [0, 1]$ COMPACTIEY Mf = $(x, 1) \sim (f(x), 0)$ My = My U U+/Ky U U-/Ky

End-periodic mapping tori S infinite-type surface f end-periodic homeo⁺ $E \times : f = 0 \circ T_{\alpha}$ Mf mapping torus $M_{f} = \underbrace{(x, i)}_{(x, i)} \sim (f(x), o)$ My = My U U+/</br>

- taut and depth one foliations
- Leafwise branched coverings

leaves

Foliation: M 3-mnfld. $F = \{ \lambda \mid \lambda \in M \text{ disjoint embedded surfaces} \}$ Such that $M = \lfloor \lambda \rfloor$ and locally $\mathbb{R}^2 \times \mathbb{R}$ foliated as a product.

1

- leaves

Foliation: M 3-mnfld. $F = \{\lambda \mid \lambda \in M \text{ disjoint embedded surfaces}\}$ Such that $M = \lfloor | \lambda |$ and locally $\mathbb{R}^2 \times \mathbb{R}$ foliated as a product.

leaves

Foliation: M 3-mnfld. $F = \{ \lambda \mid \lambda \in M \text{ disjoint embedded surfaces} \}$ Such that $M = \lfloor \lambda \rfloor$ and locally $\mathbb{R}^2 \times \mathbb{R}$ foliated as a product.

1

examples of foliated 3-manifolds taut and depth one foliations

Taut foliations: I closed transversal intersecting every leaf.

Taut foliations: I closed transversal intersecting every leaf.

Taut foliations: I closed transversal intersecting F on M every leaf.

Taut foliations: I closed transversal intersecting F on M

Many equivalent definitions:

1. There is a Riemannian metric for which all leaves are minimal surfaces.

Taut foliations: I closed transversal intersecting Fon M

- 1. There is a Riemannian metric for which all leaves are minimal surfaces.
- 2. There is a transverse volume preserving flow for some metric on \mathcal{M}

Taut foliations: I closed transversal intersecting Fon M

- 1. There is a Riemannian metric for which all leaves are minimal surfaces.
- 2. There is a transverse volume preserving flow for some metric on \mathcal{M}

pseudo - Anosov flows
transverse to
$$f!$$
 UNIVERSAL
(Som Taylor,
Michael Landry,
Yair Minsky) $p: \pi_1(M) \longrightarrow Homeo^+(S')$

Taut foliations: I closed transversal intersecting F on M

- 1. There is a Riemannian metric for which all leaves are minimal surfaces.
- 2. There is a transverse volume preserving flow for some metric on \mathcal{M}
- 3. There is a continuous map $\Psi: M \to S^2$ such that for each $\lambda \in \mathcal{F}$, the restriction Ψ_{λ} is a branched covering. [Calegari, Ghys, Donaldson]

Taut foliations: I closed transversal intersecting F on M

- 1. There is a Riemannian metric for which all leaves are minimal surfaces.
- 2. There is a transverse volume preserving flow for some metric on \mathcal{M}
- 3. There is a continuous map $\Psi: M \to S^2$ such that for each $\lambda \in \mathcal{F}$, the restriction \mathcal{H}_{λ} is a branched covering. [Calegari, Ghys, Donaldson] "Leafwise Branched Covering"

- examples of foliated 3-manifolds
- taut and depth one foliations
- Leafwise branched coverings

YAY Z

Branched Covering Maps

Branched Covering Maps

() quotient by a finite order homeo

96

hyperelliptic involution

Branched Covering Maps

Leafwise branched coverings on mapping tori S surface, f e Home o⁺ (S)

 $M_{f} = \frac{5 \times [0, 1]}{(x, 1) \sim (f(x), 0)}$

Leafwise branched coverings on mapping tori Sourface, fe Homeot (S) $M_{f} = \frac{S \times \mathbb{R}}{(x, t+1)} \sim (f(x), t)$ t=1 \$

t=0 (~

4

Leafwise branched coverings on mapping tori Start with $\tilde{\gamma}: S \times \mathbb{R} \longrightarrow S^2$

Leafwise branched coverings on mapping tori Start with $\widetilde{\Psi}: S \times \mathbb{R} \longrightarrow S^2$

 \underline{Q} : When does $\widetilde{\mathcal{Y}}$ descend to M_{f} ?

Leafwise branched coverings on mapping tori Start with $\widetilde{\Psi}: S \times \mathbb{R} \longrightarrow S^2$

Leafwise branched coverings on mapping tori Start with $\tilde{\mathcal{V}}: S \times \mathbb{R} \longrightarrow S^2$

Leafwise branched coverings on mapping tori Start with $\tilde{\mathcal{V}}: S \times \mathbb{R} \longrightarrow S^2$

Leafwise branched coverings on mapping tori Start with $\widetilde{\Psi}: S \times \mathbb{R} \longrightarrow S^2$

Leafwise branched coverings on mapping tori Start with $\widetilde{\Psi}: S \times \mathbb{R} \longrightarrow S^2$

$$Q$$
: When does $\tilde{\gamma}$ descend to M_f ?

NEED:
$$\widetilde{\mathcal{V}}_{\circ} \simeq \widetilde{\mathcal{V}}_{\circ} \cdot f$$

"homotopy through branched coverings"

Q1 Given
$$f \in Homeo^+(S)$$
, find $\gamma : M_f \longrightarrow S^2$.

Q1 Given
$$f \in Homeo^+(S)$$
, find $\Upsilon: M_f \longrightarrow S^2$.
Q2 Given $\Upsilon_0: S \longrightarrow S^2$, find $f \in Homeo^+(S)$
Auch that $\Upsilon: M_f \longrightarrow S^2$, $\Upsilon_e := \Upsilon_0$ Works.

$$21$$
 Given $f \in Homeo^+(S)$, find $\gamma : M_f \longrightarrow S^2$.

find γ_0 and f such that $\gamma_0 \simeq \gamma_0 \circ f$

Examples: $\gamma \simeq \gamma_{\circ f}$

(1) Hyperelliptic Homeomorphisms

fol = Lof ्रे gi

Examples: $\gamma \simeq \gamma_{\circ} \neq$

(1) Hyperelliptic Homeomorphisms

Examples: $\gamma \simeq \gamma_{\circ f}$

Examples: $\gamma \simeq \gamma_{\circ f}$

Examples: $\gamma \sim \gamma_{\circ f}$

3 Infinite - type surfaces??

Examples: $\gamma \simeq \gamma_{\circ 4}$

3 Infinite - type surfaces

Examples: $\gamma \simeq \gamma_{\circ f}$

3 Infinite - type surfaces

ĮΨ

 $\left(\uparrow \right)$

Examples: $\gamma \sim \gamma_{\circ f}$

• depth one foliations are composed of compactified mapping tori

Summary

- depth one foliations are composed of compactified mapping tori
- a foliation is taut iff it admits a leafwise branched cover

Summary

- depth one foliations are composed of compactified mapping tori
- a foliation is taut iff it admits a leafwise branched cover
- given $\not\models$ end-periodic, what is the "simplest" $\not\forall$?

Summary

- depth one foliations are composed of compactified mapping tori
- a foliation is taut iff it admits a leafwise branched cover
- given $\not =$ end-periodic, what is the "simplest" γ ?

$$\gamma \simeq \gamma_0 f$$
 \longrightarrow Leafwise Branched Cover
on MI or \overline{M}

U

"Time to do some math!" - a student of mine (THANK You!)