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Abstract

For a linear functional f on a polytope P , a cellular string is a list of faces of P from minimum
to maximum, according to f . We can order all f -cellular strings by inclusion and we call this
the Baues poset ω(P, f). In [BKS94] the authors proved that for an n-dimensional polytope,
ω(P, f) is homotopy equivalent to Sn−2. We expand this result by considering all cellular strings
on P for any linear functional; we call this set the mega Baues poset Ω(P ). We claim that this
space is homotopy equivalent to the unit tangent bundle on Sn−1. This paper contain the bulk
of the proof and the details will be completed in a later paper.

1 Initial Definitions
Definition 1.1. A convex polytope is the convex hull of a finite number of points in Rn. More
specifically, if we are given a point set {v1, . . . , vk} ⊂ Rn, then its convex hull is given by

P :=
{
λ1v1 + · · ·+ λkvk

∣∣∣ λi ≥ 0,

k∑
i=1

λi = 1
}

and this is a convex polytope.

Although this definition seems daunting, polytopes are likely familiar for the reader. The triangle,
square, and pentagon are 2-dimensional polytopes. The tetrahedron and cube are 3-dimensional
polytopes (see Figure 1). In two dimensions, the convex hull of a finite point set can be thought
of as stretching a rubber band around some fixed points and letting it go (see Figure 2). In three
dimensions we can think of stretching a latex balloon around a finite number of fixed points in space.
For a concrete example, take the following point set in R3.{

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)
}
.

The convex hull of these points is the standard unit cube with these eight points becoming the vertex
set.

A face of a polytope P is the convex hull of a subset of its vertices which does not intersect
the interior of P . The dimension of a face is the dimension of the smallest affine subspace of Rn
containing the face. For a face of dimension k, we will refer to it as a k-face. For example, the vertex
(0, 0, 0) is a 0-face of the cube; the edge from (0, 0, 0) to (1, 0, 0) is a 1-face of the cube; and the unit
square with vertices {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)} is a 2-face of the cube.

Now we turn our attention to the other main piece of this investigation.
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Figure 1: Two-dimensional polytopes (triangle, square, pentagon) on the left. Three-dimensional polytopes
(tetrahedron, cube) on the right.

Figure 2: An intuitive picture of taking the convex hull in two dimensions.

Definition 1.2. A linear functional is a linear map f : Rn → R. A map f is linear if for all
x1, x2 ∈ Rn and a ∈ R, we have

f(x1 + x2) = f(x1) + f(x2) and f(ax1) = af(x1).

For any linear functional f : Rn → R, there is a unique vector a ∈ Rn such that f(x) = a · x
for all x ∈ Rn. The vector a = (a1, . . . , an) is defined such that ai = f(ei) where ei is the standard
basis vector in Rn. We leave it to the reader to show that a has the properties we claim.

In this paper, we will apply a linear functional f : Rn → R to an n-dimensional polytope P
in Rn. We then examine which faces of P are maximized or minimized under f . Recall that the
dot product of two unit vectors is maximized when they point in the same direction and the dot
product is minimized when they point in opposite directions. Consider Figure 3a: which vertex of
P is maximized under the linear functional associated to vector a? Which vertex is minimized?

Given a polytope P and a vector a, we can visually determine how the vertices on P are ordered
according to the linear functional. First, extend vector a to a line. Next, project each vertex of P
orthogonally onto this line. The direction of a indicates the maximum end of the line. Note that this
process is a direct interpretation of the physical meaning of the dot product: a ·x is the “component
of x in the direction of a”. In this way, applying a linear functional to a polytope can be thought
of as “squishing” the polytope onto a line segment. Figure 3b shows the result of performing this
process on the example in Figure 3a. With this construction, we see that v2 is the maximum vertex
and v4 is the minimum vertex.

For a fixed polytope P in Rn, a linear functional f : Rn → R is generic if f is non-constant
on every k-face of P for k ≥ 1. For the first part of this paper, we will only discuss generic linear
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(a) (b)

Figure 3: We can find the maximum and minimum vertices of a polytope P according to a linear
functional a by projecting each vertex orthogonally onto the line containing a.

Figure 4: The monotone paths {e0, e1, e2} and {e0, e3, e4} are related by a face flip across F1.

functionals on polytopes. A generic linear functional achieves its maximum (resp. minimum) at a
unique vertex on the polytope. This means that we can more easily define the following objects.

Definition 1.3. Let P be a polytope and f be a generic linear functional on P . Then a path
comprised of edges {e1, . . . , ek} is a monotone path if vmin ∈ e1, vmax ∈ ek, and f is strictly
increasing over each ej .

Sometimes it helps to think about f as describing a temperature gradient on the polytope P .
The coldest point on P is vmin and the hottest point is vmax. Then a monotone path is a walk along
the edges of P from the coldest point to the hottest where the temperature is always increasing.

Figure 4 shows a linear functional on a cube with minimum and maximum vertices as labeled.
Consider two monotone paths on this cube given by P1 = {e0, e1, e2} and P2 = {e0, e3, e4}. The
difference between these two paths depends on whether we walk around F1 in the clockwise or
counterclockwise direction. We say that P1 and P2 are related by a face flip because we can imagine
reflecting F1 over a diagonal axis to turn P1 into P2. What if we walked from vmin to vmax using
the edge e0 and the entire face F1? This walk would contain both P1 and P2. From this line of
reasoning, we arrive at the following definition.

Definition 1.4. A cellular string on P is a sequence of faces F1, . . . , Fk such that

(i) vmin ∈ F1 and vmax ∈ Fk;

(ii) f is non-constant on all Fi;

3



(iii) the f -maximizing face of Fi is the f -minimizing face of Fi+1 for 1 ≤ i ≤ k − 1.

Remark. This last condition guarantees that the cellular string will be connected and that it will
not “back track”. We did not need this condition when defining monotone paths because there is only
one direction to “travel” along an edge.

If F is a cellular string on polytope P according to a linear functional f , then we will sometimes
call F an f -cellular string. Looking back at the example in Figure 4, the list {e0, F1} is a cellular
string. The two monotone paths P1 and P2 are “children” of this cellular string. We make this notion
more formal in the next section.

In light of definition 1.4, we see that the actual value of f at each vertex of P is not relevant to
the creation of cellular strings: only the ordering, from minimum to maximum, that f imposes on
the vertices of P . Since we are only concerned with the set of cellular strings on a polytope, moving
forward we will not find the specifics of the linear functional relevant. In particular, for c > 0, c · f
and f will designate the same order on the vertices. Hence, the magnitude of the vector a will have
no effect on the set of cellular strings– but its direction will be of primary importance.

2 The Baues Problem
A partially ordered set, commonly called a poset, is a set X along with a partial order1 denoted by
≤. The partial order must satisfy three conditions. For x, y, z ∈ X, the partial order must be

• reflexive: x ≤ x;

• antisymmetric: if x ≤ y and y ≤ x, then x = y;

• and transitive: if x ≤ y and y ≤ z then x ≤ z.

We denote a poset by (X,≤). A chain is a subset C of X where all the elements in C are
comparable by the partial order. Posets are commonly used in combinatorics to organize a set into
an object with more structure. A standard example is the face poset of a polytope P : all the faces of
P ordered by inclusion. For two faces F and F ′ of P , we say F ≤ F ′ if and only if F ⊆ F ′. The face
poset of a polytope carries all of the combinatorial information about the polytope and simplifies
many arguments about polytopes. We will use a poset to organize the set of all cellular strngs.

For two f -cellular strings F = (F1, . . . , Fk) and E = (E1, . . . , Em), we say F ≤ E if and only if⋃
Fi ⊆

⋃
Ei. Since the polytope P is finite, there are only finitely many f -cellular strings. Letting

{F} be the collection of all f -cellular strings on P , we construct the poset ω(P, f) := ({F},≤) where
≤ is the partial order defined above. This construction is called the Baues Poset after H. J. Baues
who studied it in his 1980 paper “Geometry of loop spaces and the cobar construction” [Bau80].

There is a standard way of constructing a simplicial complex from a poset (X,≤) called the order
complex. The vertices of the order complex are elements of X and the higher dimensional faces are
the chains in (X,≤). See Figure 5 for an example of the order complex.

Example 2.1. Let P be a tetrahedron with vertices labeled 1, 2, 3, and 4 and let f be a generic
linear functional such that f(1) < f(2) < f(3) < f(4). Then the cellular strings are

{12, 23, 34}, {12, 24}, {13, 34}, {14}, {12, 234}, {123, 34}, {124}, {134}.

The poset ω(P, f) and its order complex are shown in Figure 6.

4



Figure 5: A poset X (left) and its order complex (right).

Figure 6: Constructing the Baues poset on the simplex for a generic linear functional.

The order complex allows us to view a poset as a topological object. We define the homotopy
type of a poset to be the homotopy type of the order complex on that poset. In [Bau80], Baues
conjectured that ω(P, f) is homotopy equivalent to a sphere. L. J. Billera, M. M. Kapranov, and B.
Sturmfels gave a proof in the affirmative for this conjecture in their 1994 paper “Cellular Strings on
Polytopes” [BKS94].

Theorem 2.2. [Theorem 1.2 in [BKS94]] Let P be an n-dimensional convex polytope P ⊆ Rn and
let f : Rn → R be a generic linear functional. Then the Baues poset ω(P, f) is homotopy equivalent
to Sn−2.

We will not give a proof of this theorem, but we point to all the examples we have looked at
to see it in action. Notice that the tetrahedron in Example 2.1 is a 3-dimensional polytope and its
Baues poset, shown in Figure 6, is homotopy equivalent to S1.

Consider the Baues poset for any polygon (two-dimensional polytope) P and generic linear
functional f . There are always exactly two f -cellular strings on P : one from the minimum to
maximum in the clockwise direction, and one in the counterclockwise direction. These cellular
strings are not comparable because they partition the edges of P . Also ω(P, f) has no chains larger
than a single element, so it is isomorphic to its order complex. Thus, we see that ω(P, f) is two
isolated vertices which is isomorphic to S0.

1The order is partial because not all pairs of elements in the set are comparable.
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3 Extending the Baues Problem
We now look beyond the traditional Baues problem by asking if cellular strings from different linear
functionals can exist in the same “world”. Our goal is to construct one large structure– a mega Baues
poset– which includes all cellular strings on P from any linear functional. Then what can we say
about the homotopy type of this structure? Before we dive into the construction process, we first
need to gather our materials.

3.1 Many linear functionals
To begin, let’s take a closer look at all possible linear functionals on a polytope P . Each linear
functional is associated to a unique vector in Rn: the set of all these vectors V is called the dual
space.

Let F be any k-face of P with k ≥ 1. A linear functional is constant on F if and only if the
associated vector is orthogonal2 to F . We look at the set of all vectors in V which are orthogonal
to F and this creates a n − dim(F ) subspace of V . This is called the orthogonal complement of F
and we will denote it F⊥.

We can also consider the set of vectors in V where the associated linear functional is maximized3

on F . We call this set the normal cone and denote it C(F ). The collection of all normal cones of
faces of P is the normal fan of P given by

N(P ) := {C(F )}F∈faces(P ).

In general, a polyhedral fan K is a collection of convex polyhedral cones in Rn such that:

• If σ ∈ K then any face of σ is also in K.

• If σ, τ ∈ K then σ ∩ τ is also in K.

The normal fan N(P ) covers the dual space V and has reverse inclusion properties: for faces F and
G of P we have F ⊆ G if and only if C(G) ⊆ C(F ). We leave it to the reader to check that this
property and the definition of normal cones imply that N(P ) satisfies the conditions for a polyhedral
fan.

A vector a ∈ C(F ) is maximized on F if and only if −a is minimized on F . Hence we define

−C(F ) := {−a | a ∈ C(F )}

to be the set of all vectors minimized on face F . The collection −N(P ) = {−C(F )} is also a
normal fan since N(P ) is. Once we have N(P ) and −N(P ), we can use them to construct another
polyhedral fan Γ(P ) which includes information from both of them.

Γ(P ) := {C(F ) ∩ −C(G) | F,G are faces of P}

This fan Γ(P ) is called the common refinement of N(P ) and −N(P ). A face of Γ(P ), given by
C(F ) ∩−C(G), contains exactly the set of linear functionals with maximum at F and minimum at
G. Hence, Γ(P ) partitions all linear functionals in V based on their minimum and maximum faces.
Note that if a achieves its maximum (or minimum) on a face F , then a is also constant on F . This
means that geometrically, Γ(P ) is made from convex polyhedral cones orthogonal to each face of P .

2Exercise for the reader to prove this!
3This means that f(x) ≥ f(y) for all x ∈ F and y ∈ P . By the convexity of P , f will be constant on F .
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(a) The normal fan N(P )
overlayed on polytope P . (b) −N(P ) overlayed on P . (c) Γ(P )

Figure 7: Creating Γ(P ) for a polygon P .

Example 3.1 (Creating Γ(P ) for a polygon P ). First we create N(P ). Since P is a polygon, C(e)
for an edge e will be a ray orthogonal to e in the direction of e. We start by drawing each of these
rays issuing from the origin in V . These subdivide V into one region for each vertex of P . For a
vertex v of P contained in edges e1 and e2, C(v) will be the region bounded by C(e1) and C(e2).
Figure 7a shows this construction for a pentagon P with N(P ) overlayed on top of P . The red
numbers indicate the vertex which is maximized in that region.

Next, we create −N(P ). In two-dimensions, −N(P ) will be a 180◦ rotation of N(P ). Figure 7b
shows −N(P ) overlayed on P . The blue numbers indicate the vertex which is minimized in that
region of −N(P ).

Finally, we take the common refinement of N(P ) and −N(P ) to get Γ(P ). This can be visualized
by overlaying the two polyhedral fans and looking at the intersections of their faces. Figure 7c depicts
the result with the red numbers indicating the vertex which is maximized in that region and the
blue numbers indicating the vertex which is minimized.

We have now “grouped together” linear functionals in V which have similar properties. However,
there can be two linear functionals in the same face of Γ(P )—both with the same minimum and
maximum faces on P—which generate different sets of cellular strings on P . Take, for example,
linear functionals f1 and f2 on the tetrahedron in Figure 8. The vertices are ordered differently by
f1 and f2:

f1(1) < f1(3) < f1(2) < f1(4) and f2(1) < f2(2) < f2(3) < f2(4).

Although, f1 and f2 do have the same maximum and minimum vertices of P so they will be in the
same face of Γ(P ). Now see that {1, 3}, {3, 2}, {2, 4} is an f1-cellular string but not an f2-cellular
string. On the other hand, {1, 4} is both an f1- and an f2-cellular string. This means that we must
further refine Γ(P ) if we would like linear functionals in the same face of the fan to generate the
same set of cellular strings.

For a vertex v of P , every linear functional will be constant on v and so v⊥ = V . Also, for an
edge e of P , the space e⊥ will be a hyperplane in V (i.e. n − 1 dimensional subspace). If F is a
k-dimensional face with k ≥ 2, then a linear functional is constant on F if and only if it is constant
on all edges bounding F . This follows because a vector orthogonal to a set of coplanar lines is also
orthogonal to the plane containing those lines. This observation implies that if F is bounded by
edges e1, . . . , em, then F⊥ = e⊥1 ∩ · · · ∩ e⊥m.

Hence, for any face F ⊆ P , we can express F⊥ as the intersection of hyperplanes. This means
that we do not need to store information on F⊥ for every face of P , but rather, we only need e⊥
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Figure 8: Two linear functionals with the same maximum and minimum faces on a tetrahedron.

for each edge. The collection {e⊥}e∈edges(P ) is called a hyperplane arrangement. This set subdivides
the space V into a polyhedral fan; we call this fan Σ(P ). Let T1, . . . , Tm be the set of distinct
hyperplanes such that Ti = e⊥ for some edge e of P .4 For each Ti, notice that V \Ti consists of two
open half spaces. Label the closures of these regions (closed half-spaces) T−1

i and T+1
i arbitrarily

and let T 0
i = Ti. Then a face σ of Σ(P ) is defined by a list (x1, . . . , xm) such that xi ∈ {−1, 0,+1}.

We set

σ =

m⋂
i=1

T xi
i .

The n-dimensional faces of Σ(P ) arise when xi ̸= 0 for all i. Although, depending on the geometry
of the hyperplanes, we can get σ = {0} in this case. Similarly, if there are exactly k entries xi for
which xi = 0, then dim(σ) ≤ k.

Example 3.2 (Creating Σ(P ) for a polygon P ). Consider the polygon P with edge labels as shown
in Figure 9a. Since no two edges of P are parallel, each edge with have a distinct orthogonal
complement. Figure 9b shows T1 := e⊥1 and the corresponding regions T−1

1 and T+1
1 of V . Note

that the choice of −1/ + 1 was made arbitrarily and the other labeling system would also work.
Then, once we have done this for all edges e1, . . . , e5, we can construct Σ(P ) using the process
described above. This is shown in Figure 9c. Notice that Σ(P ) is actually the common refinement
of polyhedral fans {T−1

i , T 0
i , T

+1
i }.

We claim that Σ(P ) is a polyhedral fan and that it is the refinement of Γ(P ) that we are looking
for. That is, Σ(P ) functions as a “map”5 for all possible linear functionals with distinct Baues posets
on P . To start, we show Σ(P ) is a polyhedral fan.

Lemma 3.3. Σ(P ) is a polyhedral fan.

Proof. First, we show that every face of Σ(P ) is a convex polyhedral cone. Let σ be a face of Σ(P )
such that (x1, . . . , xm) is the list defining σ and

σ =

m⋂
i=1

T xi
i .

4Note that some edges in P may have the same orthogonal complement so there may be fewer Ti than edges of P .
5in the atlas sense
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(a) The polygon P with edges
labeled.

(b) The hyperplane e⊥1 in the dual
space V with regions labeled T−1

1 ,
T 0
1 , and T+1

1 .
(c) Σ(P ). Hyperplanes for

different edges are color-coded.

Figure 9: Creating Σ(P ) for a polygon P .

If xi ̸= 0, then T xi
i is a closed half space. Otherwise if xi = 0 then T xi

i = Ti = T−1
i ∩T+1

i and this is
the intersection of closed half spaces. Hence, we see that σ is the intersection of closed half spaces
so it is a convex polyhedral cone.

Next, suppose that τ is a face of σ. If τ ̸= σ, then τ is contained in ∂σ and

τ =
(
Ti1 ∩ · · · ∩ Tiℓ

)
∩ σ

for some set of hyperplanes Ti1 , . . . , Tiℓ bounding σ. In this case, we have

τ =

m⋂
i=1

T yii such that yi =

{
0 if i = ij for 1 ≤ j ≤ ℓ

xi if not
.

Then τ is the face of Σ(P ) defined by the list (y1, . . . , ym).
Lastly, suppose that σ and τ are faces of Σ(P ) defined by lists (x1, . . . , xm) and (y1, . . . , ym)

respectively. Then

σ =

m⋂
i=1

T xi
i and τ =

m⋂
i=1

T yii

so we have

σ ∩ τ =

m⋂
i=1

T xi
i ∩ T yii .

Notice that if xi = yi, then T xi
i ∩ T yii = T xi

i . Otherwise, if xi ̸= yi, then T xi
i ∩ T yii = Ti = T 0

i .
Hence, we see that σ ∩ τ = ω where ω is the face of Σ(P ) defined by the list

(z1, . . . , zm) such that zi =

{
xi if xi = yi

0 if xi ̸= yi
.

Therefore, we have seen that Σ(P ) satisfies all the conditions and it is a polyhedral fan.

Lemma 3.4. Σ(P ) is a refinement of Γ(P ). That is, for all σ ∈ Σ(P ) and τ ∈ Γ(P ), σ ∩ τ is a
face of Σ(P ).
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Proof. Let σ be defined by the list (x1, . . . , xm) and let τ = C(F )∩−C(G) for faces F and G of P .
First, we consider C(v) for a vertex v of P . Suppose that Ti1 , . . . , Tiℓ is the list of hyperplanes

such that Tij = e⊥j for an edge ej containing v.6 A linear functional f on P is maximized at v if
and only if f(v) ≥ f(w) for all vertices w adjacent to v.7 Let edge ej containing v have endpoints v
and vj . Then C(v) is the set of all a ∈ V such that a · v ≥ a · vj for all vj . For any single j, the set
of these a is exactly T

xij

ij
where xij = ±1. Hence, we can write

C(v) = T
xi1
i1

∩ · · · ∩ T xiℓ
iℓ

where (xi1 , . . . , xiℓ) is a list of entries from {+1,−1}. We now turn our attention back to a general
face F of P . Suppose that F has vertices v1, . . . , vk. A linear functional is maximized on F if and
only if it is maximized on all vertices of F . Hence, we have

C(F ) = C(v1) ∩ · · · ∩ C(vk).

Each C(vi) can be written as the intersection of spaces T xj

j using the process above. Suppose for
vertices v and w of F , there is some j (1 ≤ j ≤ m) such that T xj

j appears in the intersection for C(v)
and T

yj
j appears in the intersection for C(w). Then T

xj

j ∩ T yjj = T
zj
j where zj = xj if xj = yj and

zj = 0 if xj ̸= yj . Using this reasoning, we conclude that C(F ) can be written as the intersection of
spaces T

zij
ij

for zij ∈ {−1, 0,+1}.

C(F ) = T
zi1
i1

∩ · · · ∩ T zipip

This same process can be used to rewrite −C(G) as the intersection of such spaces; suppose
that G has vertices u1, . . . , uk∗ . We use two facts analogous to those above but applied to linear
functionals minimizing faces on P . A linear functional f is minimized at a vertex v if and only if
f(v) ≤ f(w) for all vertices w adjacent to v. Also, a linear functional is minimized on G if and only
if it is minimized on all vertices of G. Hence, we can write −C(G) as follows.

−C(G) = −C(u1) ∩ · · · ∩ −C(uk∗)
= T

wj1
j1

∩ · · · ∩ Twjq

jq

We would like to show that σ ∩
(
C(F ) ∩ −C(G)

)
is a face of Σ(P ). Consider only σ ∩ C(F ).

σ ∩ C(F ) = σ ∩
(
T
zi1
i1

∩ · · · ∩ T zipip

)
=

m⋂
i=1

T yii where yi =

{
0 if i = ij for some 1 ≤ j ≤ p and xi ̸= zij
xi otherwise

Hence, we see that σ ∩ C(F ) is a face of Σ(P ). Then we can rewrite

σ ∩
(
C(F ) ∩ −C(G)

)
=

(
σ ∩ C(F )

)
∩ −C(G)

and, since −C(G) can be written as the intersection of spaces Twj

j , we see that this intersection is
a face of Σ(P ) by applying the same reasoning. Therefore, Σ(P ) is a refinement of Γ(P ).

6If two edges share a vertex, they cannot be parallel. Hence, there will be one Tij for each edge ej .
7This follows from the convexity of P .
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Earlier we discussed generic linear functionals: those which are non-constant on all k-faces of P
for k ≥ 1. Notice that if a ∈ V defines a generic linear functional, then a cannot lie in e⊥ for any
edge e of P . Hence the generic linear functionals are exactly those in the n-dimensional faces of
Σ(P ).

Lemma 3.10 in the next section proves that the faces of Σ(P ) completely determine the distinct
linear functionals. Suppose f1 and f2 are linear functionals with associated vectors a1 and a2. If a1
and a2 lie in the same face of Σ(P ), then the Baues posets ω(P, f1) and ω(P, f2) are identical.

Consider instead if f1 and f2 are generic and a1 and a2 lie in different n-faces of Σ(P ) (different
connected components of V \

⋃
e⊥). As we rotate a1 continuously to a2, there will be a moment

where we pass through some hyperplane e⊥, corresponding to a non-generic linear functional. In
order to connect the Baues posets from the starting and ending positions, we must define the Baues
poset for this non-generic linear functional. In the next section, we will expand all the definitions
from Section 2 to include non-generic linear functionals.

3.2 Including non-generic linear functionals
We start by defining cellular strings in generality.

Definition 3.5. Let P be a polytope in Rn. A list of faces of P given by F = (F0, F1, . . . , Fk−1, Fk)
is a cellular string if there is a linear functional f : Rn → R (f ̸≡ 0) such that

(i) F0 is the face minimizing f on P ;

(ii) Fk is the face maximizing f on P ;

(iii) F0 ∩ F1 ̸= ∅ and Fk−1 ∩ Fk ̸= ∅;

(iv) f is non-constant on all faces Fi for 1 ≤ i ≤ k − 1;

(v) the f -maximum face of Fi is the f -minimum face of Fi+1 for 1 ≤ i ≤ k − 2.

Conditions (i) and (ii) in Definition 3.5 are analogous to condition (i) in Definition 1.4. Conditions
(iv) and (v) in Definition 3.5 are exactly conditions (ii) and (iii) in Definition 1.4. Lastly, condition
(iii) of Definition 3.5 ensures that the cellular string will be connected. Sometimes we refer to a
cellular string as only a list of faces apart from any specific linear functional. This is helpful when
comparing cellular strings. Other times, when the linear functional is relevant, we will call F an
f -cellular string.

If we fix a generic linear functional f , then this definition agrees with Definition 1.4 except that
the cellular strings will have extra “tags”: vmin appended at the beginning and vmax appended at
the end. As we begin to look at cellular strings from many different linear functionals at once, these
tags indicate the direction of the cellular string.

Consider the example in Figure 10. See that F1 = (v0, F, v1) is an f1-cellular string and F2 =
(v1, F, v0) is an f2-cellular string. We notice that F1 and F2 consist of the same set of faces (namely
{F, v0, v1}), but the direction from minimum to maximum according to each linear functional is
different. Hence, we would like to consider F1 and F2 as different cellular strings. Thus, the “tags”
of the minimum and maximum faces indicate the direction of a cellular string, even when it consists
of only one face. On the other hand, F1 is also an f3-cellular string. Notice that f1 and f3 are in the
same face of Σ(P ). We will see in Lemma 3.10 that f1 and f3 have identical sets of cellular strings.

Now that we have defined cellular strings for any linear functional, we would like to be able to
compare cellular strings derived from different linear functionals.

11



Figure 10: On the left is the polytope P with faces labeled v0, F , and v1. On the right is Σ(P ) with three
linear functionals. This shows a single collection of faces forms different cellular strings depending on the

linear functional.

Definition 3.6. For two cellular strings F = (F0, F1, . . . , Fk−1, Fk) and E = (E0, E1, . . . , Em−1, Em),
we say that F ≤ E if and only if

(i)
⋃k
i=0 Fi ⊆

⋃m
i=0Ei,

(ii) F0 ⊆ E0 and Fk ⊆ Em.

Compare Definition 3.6 with the partial order we assigned to cellular strings from the same
generic linear functional in Section 2. The extra condition (ii) of Definition 3.6 is exactly because
of the issue with direction which we were exploring above. We only want to compare two cellular
strings if they are in the same direction from minimum to maximum.

With the definition for a general cellular string and a way to compare cellular strings across linear
functionals, we can now define a mega Baues poset consisting of all cellular strings on a polytope.

Definition 3.7. Let P be an n-dimensional polytope in Rn. The mega Baues poset of P , denoted
Ω(P ) is the set of all cellular strings on P with the partial order given in Definition 3.6.

Remark. Note that we have defined Ω(P ) such that each cellular string only appears once, even
though it can be an f -cellular string for many different linear functionals f . Hence, since P is finite,
we can be sure that Ω(P ) is as well.

3.3 Creating a cell complex of linear functionals
We now return to our organization of all linear functionals on a polytope from Section 3.1. We
know that some linear functionals generate identical sets of cellular strings, and hence identical
Baues posets. For example, f(x) and c · f(x) for a positive constant c as we discussed at the end
of Section 1. Additionally, if we take a generic linear functional f and wiggle it a little to get f∗,
intuition tells us that all f -cellular strings will also be f∗-cellular strings. To completely categorize
all linear functionals on P , we will take the polyhedral fan Σ(P ) defined in Section 3.1 and use it to
construct a regular cell complex of linear functionals.

An open cell is a topological space homeomorphic to the open unit ball Bn. A closed cell is a
topological space homeomorphic to the closed unit ball Bn. We call these n-dimensional cells or just
an n-cells.

Definition 3.8. Let X be a nonempty topological space. A cell decomposition of X is a partition
E of X into open cells. For each e ∈ E of dimension n ≥ 1, there is a continuous map Φ from some
closed n-cell D into X such that Int D is homeomorphic to e under Φ and Φ(∂D) is contained in
the union of cells of E with dimension strictly less than n.
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The map Φ for cell e is called its characteristic map. If X is Hausdorff, the space X with a cell
decomposition is a cell complex. A CW complex is a cell complex (X,E ) satisfying the following
conditions:

1. The closure of each cell is contained in a union of finitely many cells.

2. U ⊆ X is open if and only if U ∩ e is open in e for each e ∈ E .

The dimension of X is the largest n such that X contains at least one n-cell. An open cell e is
called a regular cell if its characteristic map is a homeomorphism onto e. That is, if e ∼= Bn then
e ∼= Bn with the same homeomorphism. A CW complex is a regular CW complex (or just a regular
cell complex ) if each of its cells is regular and the closure of each cell is a finite subcomplex.

Regular cell complexes will be useful because they have properties which we would like to expect
of our topological spaces. For example, they have the following nice property:

Let X be a regular cell complex. Then if Γ is the face poset of X, the order complex on
Γ is homeomorphic to X.

We can now turn back to Σ(P ) (for a n-dimensional polytope P ) which we were studying in
Section 3.1. At the end of Section 1, we saw that the magnitude of a linear functional has no effect
on the creation of cellular strings, and thereby the creation of the Baues poset. We will then only
consider linear functionals with associated vector a of unit length (a ∈ Sn−1 ⊆ V ). Then we can use
Σ(P ) to give Sn−1 a regular cell decomposition by intersecting each open face of Σ(P ) with Sn−1.
We will let M(P ) refer to Sn−1 along with the cell decomposition inherited from Σ(P ).8 In fact,
this process works for any polyhedral fan as stated in Lemma 3.9. It follows from the fact that the
faces of a polyhedral fan are convex polyhedral cones and they have the same intersection properties
required of the closed cells of a regular cell decomposition.

Lemma 3.9. If K is a polyhedral fan covering Rn, then E := {σ ∩ Sn−1 | σ is an open face of K} is
a regular cell decomposition of Sn−1.

The faces of a convex polytope are also convex polytopes of smaller dimension. We can then
consider a linear functional on P as a linear functional on a face F of P . For any face F ⊆ P of
dimension at least 1, let S be the smallest affine subspace of Rn that contains F . Then

dim(S) = dim(F ) =: m.

Let T ⊆ V be a translation of S that contains the origin. See that T is a linear subspace of V so
it is a copy of Rm. We can then view it as the dual space of F consisting of all linear functionals
on this face. For any vector a ∈ V , define a∥ to be the projection of a onto T .9 Then a = a∥ + a⊥
where a⊥ is a vector perpendicular to T . Since T is parallel to S and F ⊆ S, we know that a⊥ is
also perpendicular to F . Thus a⊥ · x is constant for all x ∈ F : the linear functionals constant on a
face are precisely those with associated vectors orthogonal to that face (recall Section 3.1). We can
write

a · x = a∥ · x+ a⊥ · x
using distributive properties of the dot product. If a is non-constant on F , then a is not perpendicular
to F so a∥ is not the zero vector. Hence, we conclude that a ·x is non-constant on a face of F if and
only if a∥ is. We will use this discussion in the proof of the following lemma.

8‘M’ stands for map!
9If v1, . . . , vm are a basis for T , then a∥ =

∑m
i=1 projvia.
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Lemma 3.10. Let f1 and f2 be linear functionals on n-dimensional polytope P ⊂ Rn with associated
vectors a1 and a2 in M(P ). If a1 and a2 lie in the same open cell of M(P ), then ω(P, f1) = ω(P, f2).

Proof. To prove this, we will show that every f1-cellular string is also an f2-cellular string. Then we
can apply the same logic to f2 to show that these linear functionals generate the same set of cellular
strings and thus have identical Baues posets.

Suppose that F = (F0, F1, . . . , Fk) is an f1-cellular string and we will show F is also an f2-cellular
string using the conditions in Definition 3.5 on page 11. First, we recall that Σ(P ) is a refinement of
Γ(P ) by Lemma 3.4. If a1 and a2 lie in the same cell of M(P ), then they also lie in the same face of
Σ(P ). Hence, they are in the same face of Γ(P ) and must have the same maximum and minimum
faces over P . Thus, conditions (i) and (ii) are satisfied.

Condition (iii) (F0 ∪ F1 ̸= ∅ and Fk−1 ∩ Fk ̸= ∅) is independent of the linear functional, so this
will be satisfied. Since f1 and f2 lie in the same open cell of M(P ), by construction they are constant
on the same faces of P . Hence, f2 must be non-constant on all faces Fi of F (for 1 ≤ i ≤ k − 1) so
condition (iv) is satisfied.

Lastly, we show that F satisfies condition (v) of Definition 3.5 with respect to f2. As already
discussed, a1 and a2 are non-constant on all faces Fi ∈ F for 1 ≤ i ≤ k − 1. For any face Fi, let
a1∥ and a2∥ be vectors in M(Fi) as constructed in the discussion before this lemma. We know a1
and a2 are constant on the same set of faces of Fi since they are in the same cell of M(P ). This
implies that a1∥ and a2∥ will also be constant on the same set faces of Fi and so a1∥ and a2∥ are
in the same cell of M(Fi). By applying the argument above for conditions (i) and (ii), we conclude
that a1∥ and a2∥ have the same maximum and minimum faces on Fi. We write (for j = 1, 2)

aj · x = aj∥ · x+ aj⊥ · x.

Since aj⊥ · x is constant on Fi, we see that aj will be maximized (or minimized) over the same face
of Fi as aj∥. Therefore, a1 and a2 also have the same maximum and minimum faces over Fi. Hence,
F satisfies condition (v) with respect to f2.

By Definition 3.5, this shows that F is an f2-cellular string as well. This argument holds for all
f1-cellular strings so ω(P, f1) ⊆ ω(P, f2). We can apply the same argument to all f2-cellular strings
to get the other inclusion and so ω(P, f1) = ω(P, f2).

With this Lemma, we see thatM(P ) categorizes all distinct linear functionals on P . Additionally,
M(P ) is a finite cell complex because there are only finitely many edges of P so only finitely many
hyperplanes in Σ(P ). Hence, we have reduced the infinitely many linear functionals on P down
to only a finite list. This combinatorial structure of linear functionals will play a large part in the
process of proving the homotopy type of Ω(P ).

3.4 Understanding our goals and the remaining tools to get there
Consider the mega Baues poset from a high-level perspective. Choosing a linear functional on P is
equivalent to choosing a point in Sn−1. Then look at P from the perspective of its minimum face
under this linear functional. A cellular string will start by taking one step away from the minimum
faces along any of its adjacent faces. This creates a “circle of possibilities” around the minimum face.
In effect, we are choosing a point on Sn−1 and then picking a direction along the surface of Sn−1 to
travel away from that point. We will see that Ω(P ) is this space, up to homotopy. This intuitive
idea is made rigorous with the notion of the unit tangent bundle of a manifold.

Let M be a Riemannian manifold. For each point x ∈M , the tangent space at x to M is denoted
Tx(M). A vector v ∈ Tx(M) has unit length if it has unit length with respect to the metric inherited
by Tx(M).
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(a) The polytope P . (b) The projection π(P ).

Figure 11: A polytope P with linear functional f given by vector a. We choose vector b orthogonal to a
and project P onto the plane spanned by these vectors using the projection π. Cellular strings on the

polygon π(P ) correspond to coherent cellular strings on P .

Definition 3.11. The unit tangent bundle on M (denoted UT (M)) is the set of pairs (x, v) where
x ∈M and v ∈ Tx(M) has unit length.

There is a natural projection π : UT (M) → M where π(x, v) = x. The fibers π−1(x) of this
map are homotopic to Sk−1 where k is the dimension of M . In particular, we will focus on the
unit tangent bundle on the sphere. For a sphere Sk, the unit tangent bundle UT (Sk) is bijective to
Sk × Sk−1 by what we have said about the fibers of π above. However, it has a more interesting
topology than that which this space inherits from the ambient Euclidean space.

Conjecture 3.12. For an n-dimensional polytope P in Rn, the mega Baues poset Ω(P ) is homotopy
equivalent to the unit tangent bundle on Sn−1.

For an intuitive picture of this homotopy equivalence, notice that each Baues poset ω(P, f) is
homotopy equivalent to Sn−2 by Theorem 2.2. Then we place these around M(P ) (which is a cell
decomposition of Sn−1), one Baues poset for each cell of the complex. The connections in Ω(P )
across the Baues posets will be “nice enough” to make this space homotopy equivalent to UT (Sn−1).

Let us go back to the picture we were discussing at the beginning of this section. For each linear
functional f given by a ∈ Sn−1 ⊆ V , we choose an orthogonal vector to a which determines the
direction along the surface of Sn−1. This orthogonal vector b also lives in V and so it defines a linear
functional. We claim that b determines a unique f -cellular string Fb.10

First we project P onto the plane spanned by vectors a and b, letting π denote this projection.
Figure 11 shows this process for a three-dimensional polytope. If Fmax is the maximum face of π(P )
under a, then π−1(Fmax) is the maximum face of P under a, and similarly for the minimum face
Fmin. The polygon π(P ) has two f -cellular strings, one on the ‘b side’ and one on the ‘−b side’ as
depicted in Figure 11b. Let Eb = (E0, E1, . . . , Ek−1, Ek) be the cellular string in the b direction.
Then Fb = (F0, . . . , Fk) where Fi = π−1(Ei) is a cellular string on P .11 This is what we call a
coherent cellular string.

Definition 3.13. An f -cellular string F = (F0, F1, . . . , Fk−1, Fk) is coherent if there is another

10That is, there is only one Fb for each b but multiple choices for b can give the same cellular string.
11There a few missing details here, but we leave it to the reader to check.
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Figure 12: A path representing a coherent cellular string (left) and a path representing a non-coherent
cellular string (right).

linear functional g : Rn → R such that

k−1⋃
i=1

Fi = {p ∈ P | g(p) ≥ g(x) for all x ∈ f−1(f(p))}.

We can think of coherent cellular strings as being those which stay on one “side of the polytope”
as it moves from minimum to maximum. Imagine taking a skewer and sticking the polytope from
minimum to maximum like a kabob. A coherent cellular string would stay somewhat parallel to the
skewer whereas a non-coherent cellular string would wrap around the kabob. See Figure 12. This
can only be visualized in three-dimensions, but it gives us a geometric sense for the formal definition.

The subset of the mega Baues poset consisting of only coherent cellular strings is in direct
correspondence with the unit tangent bundle. For each linear functional f , we choose some other
linear functional g and this defines a coherent cellular string. Without loss of generality, we can
choose g to be orthogonal to f with unit length.12 The set of all choices for f and g is exactly the unit
tangent bundle. If we partition pairs (f, g) based on the resulting cellular string, we have a regular
cell decomposition of UT (Sn−1). In this way, the set of coherent cellular strings is a combinatorial
version of the unit tangent bundle.

The particular use of coherent cellular strings in our investigation is implicit rather than explicit.
In the following section, we will ultimately prove our claim by deforming each cellular string into a
coherent cellular string. Imagine a sphere punctured by a skewer through its center. For any simple
path from one puncture point to the other, we can continuously slide the path along the surface of
the sphere, deforming it so it becomes a great circle. This great circle on the sphere is analogous to
a coherent cellular string. Our approach to proving the claim will fill in the details of this high-level
approach.

4 Ω(P ) is homotopy equivalent to UT (Sn−1)

The mega Baues poset is a combinatorial object which tends to have lots of details and be challenging
to describe. In order to continue working with it, we will translate the mega Baues poset into an
indiscrete object which does not necessarily depend on the geometry of the polytope. The mega
Baues poset is essentially the set of all discrete paths (cellular strings) on the boundary of a polytope.

12Because for any choice of g there is some g′ orthogonal to f with unit length such that g and g′ give the same
cellular string.
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Figure 13: A pair (a, ψ) in Λn defines a path φa,ψ on the sphere Sn−1. The point φa,ψ(t0) for some
t0 ∈ [0, 1] in constructed here.

The boundary of an n-dimensional polytope is homotopy equivalent to the n−1-dimensional sphere;
this leads us to reinterpret the mega Baues poset as continuous paths on the sphere.

4.1 Translating the mega Baues poset
Let Λn be the set of all pairs (a, ψ) such that a ∈ Sn−1 ⊆ Rn and ψ : [0, 1] → Sn−2 is a continuous
map. We can view these pairs as paths on the sphere Sn−1 between antipodal points. For a pair
(a, ψ), we define a path φa,ψ : [0, 1] → Sn−1 in the following way.

Let d : [0, 1] → Rn be the unit speed parameterization of the diameter of Sn−1 from −a to a
such that d(0) = −a and d(1) = a. Define φa,ψ(0) = −a and φa,ψ(1) = a. Then for t ∈ (0, 1), the
intersection of Sn−1 with the hyperplane orthogonal to the diameter at d(t) forms a copy of Sn−2.
We let this Sn−2 inherit its coordinate directions from the ambient space Rn. Then ψ(t) determines
a point on Sn−2 which we designate φa,ψ(t). Since d and ψ are continuous, φa,ψ is as well. Figure 13
displays an example of constructing the path φa,ψ in the three-dimensional case.

Recall the normal fan N(P ) for an n-dimensional polytope P in Rn. By Lemma 3.9, N(P ) gives
Sn−1 a regular cell decomposition. Each open cell in the cell decomposition is associated to a unique
face on P that is maximized by all linear functionals in that cell.

Now we define Φ : Sn−1 → {faces of P} where we view v as a vector in Rn and Φ(v) is the face
of P maximized by the linear functional v. Then, for a pair (a, ψ), we define its face bundle by

∆(a, ψ) := Φ
(
φa,ψ([0, 1])

)
.

The face bundle is simply a set of faces of the polytope P . Ultimately, we would like to determine
when this set of faces forms a cellular string, but a general ∆(a, ψ) already has some of the necessary
structure. Since φa,ψ is continuous and increasing along the diameter from −a to a, we know ∆(a, ψ)
forms a connected path starting at the minimum face according to a and ending at the maximum
face according to a.

We can give the set of all face bundles a partial order. For pairs (a, ψ1) and (b, ψ2), we say that
∆(a, ψ1) ≤ ∆(b, ψ2) if⋃

F∈∆(a,ψ1)

F ⊆
⋃

E∈∆(b,ψ2)

E, Φ(φa,ψ1(0)) ⊆ Φ(φb,ψ2(0)) and Φ(φa,ψ1(1)) ⊆ Φ(φb,ψ2(1)).

There are conditions beyond simply connectedness and starting/ending positions that we require
for cellular strings. In order to determine when ∆(a, ψ) has these properties, we can place extra
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requirements on (a, ψ). Understanding exactly which (a, ψ) give cellular strings will be a key step
in translating the mega Baues poset into an indiscrete object.

First, we have a few definitions to make things easier. The span of a cell e of Sn−1 is the span
in Rn of all vectors in that cell. We write this subspace as span(e). We claim that if a ∈ span(e),
then a is constant on the face maximized by linear functionals in e. Let F be the face maximized
by linear functionals in e. Then e = C(F ) ∩ Sn−1 and also span(C(F )) = F⊥ because C(F ) is a
full-dimensional subset of F⊥. Hence, if a ∈ span(e), then a ∈ span(C(F )) = F⊥ which means that
a is constant on F .

Next, suppose that φa,ψ(t0) ∈ e for t0 ∈ (0, 1). We assume that a,−a /∈ e (so e is not the “first” or
“last” cell crossed by φa,ψ(t)). We let ε > 0 be small. The cell before e is the open cell e′ containing
φa,ψ(t0 − ε) such that e′ ̸= e and ε is minimized. The cell after e is the open cell e′′ containing
φa,ψ(t0 + ε) such that e′′ ̸= e and ε is minimized.

For a fixed t0 (with the same conditions as above) we define the straight path at φa,ψ(t0) to be
the path given by (a, c) ∈ Λn where c is the constant map c(t) = ψ(t0) for all t. Then notice that
φa,c(t) is a great circle on Sn−1 passing through the points a, φa,ψ(t0), and −a. If φa,ψ(t0) ∈ e and
a /∈ span(e), then we define the cell below e to be the cell before e according to φa,c(t). Similarly,
the cell above e is the cell after e according to φa,c(t). If e− is the cell below e and e+ is the cell
above e, then Φ(e−) is the minimum face of Φ(e) according to a and Φ(e+) is its maximum face.13

Definition 4.1. Given an n-dimensional polytope P , let Sn−1 have the regular cell decomposition
given by N(P ). The cellular string complex of P , denoted by C(P ), is a subset of Λn consisting of
all pairs (a, ψ) satisfying the following conditions:

(i) For each open cell e of Sn−1, φ−1
a,ψ(e) ⊆ [0, 1] is connected.

(ii) If there is some t such that φa,ψ(t) ∈ e and a /∈ span(e), then the cell before e is the cell below
e and the cell after e is the cell above e.

(iii) If there is some t such that φa,ψ(t) ∈ e and a ∈ span(e), then a is not in the span of the cell
before e or the cell after e (where these are defined).

We will show that the face bundle of any pair in C(P ) is essentially a cellular string. To do
this, we need a canonical way to generate a list of faces from such a face bundle. Suppose that
(a, ψ) ∈ C(P ). From this point forward will write φ in place of φa,ψ except when the pair (a, ψ) is
unclear.

We know that φ(t) passes through only finitely many cells because there are finitely many faces
on the polytope. Let σ0, . . . , σk be an arbitrary ordering of the faces in ∆(a, ψ). Then Φ−1(σi) is
an open cell in Sn−1. Define

Ii := φ−1
(
Φ−1(σi)

)
.

Note that Ii is a connected subset of [0, 1] because of condition (i) in Definition 4.1 so it must be a
(possibly degenerate) interval. If i ̸= j, then Ii and Ij must be disjoint by definition. Also, every
t ∈ [0, 1] must be in some Ii since Φ

(
φ(t)

)
= σi for some i. Therefore, {Ii}ki=0 forms a disjoint

covering of [0, 1] and we can reorder this set of intervals to be ascending. Relabel these I0, . . . , Ik so
that Ii ≤ Ii+1 for all i.14

13This requires some proof, but it amounts to looking at the geometry of the vectors contained in e, e−, and e+.
14That is, ti ≤ ti+1 for all ti ∈ Ii and ti+1 ∈ Ii+1.
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We start by defining a list F∗. This will order the faces of ∆(a, ψ) in the desired way, but it is
not quite a cellular string because it will contain all of the “in between” faces as well.

F∗ := (F ∗
0 , . . . , F

∗
k ) where F ∗

i := Φ
(
φ(Ii)

)
for 0 ≤ i ≤ k

Then we create a list F from F∗ by deleting all the unnecessary faces but keeping the order designated
by F∗. If F ∗

i ⊆ F ∗
i+1, then delete F ∗

i from the list. If F ∗
i+1 ⊆ F ∗

i , then delete F ∗
i+1 from the list.

Repeat this process iteratively until we are left with a list of faces where no two adjcacent faces are
comparable. We relabel these F0, . . . , Fm, keeping the order and we define F = (F0, . . . , Fm).

Theorem 4.2. If (a, ψ) ∈ C(P ), then the list F obtained by the process described above is a cellular
string.

Lemma 4.3. In the list F∗, two adjacent faces F ∗
i and F ∗

i+1 are comparable.

Proof of Lemma 4.3. By construction of the intervals, we know that J := Ii ∪ Ii+1 is an interval.
Also, φ(J) is contained in exactly two cells of Sn−1 (with cell decomposition from N(P )). Since φ
is a continuous map and φ(J) must be a connected set, these cells must be comparable, implying
that F ∗

i and F ∗
i+1 are comparable.

Proof of Theorem 4.2. We will show that F = (F0, . . . , Fm) is a cellular string with respect to the
linear functional associated to vector a. To do this, we check all conditions in Definition 3.5.

First, we know that F0 = Φ(φ(0)) = Φ(−a) so F0 is, by definition of Φ, the face maximizing −a
on P . Hence, it is also the face minimizing a on P . In the same way, Fm = Φ(φ(1)) = Φ(a) is the
face maximizing a on P . Thus, conditions (i) and (ii) are satisfied.

Next, to show that F satisfies condition (iii), we prove that for any Fi and Fi+1 in F , we have
Fi ∩ Fi+1 ̸= ∅. Note that Fi and Fi+1 are not comparable by construction of F and also Fi = F ∗

j1
and Fi+1 = F ∗

j2
for faces F ∗

j1
and F ∗

j2
(j1 < j2) of the list F∗. By assumption, all faces F ∗

i for
j1 < i < j2 are deleted by the process which creates F . Hence, each F ∗

i must be contained in at
least one of F ∗

i−1 or F ∗
i+1. This implies that there is some F ∗

i0
contained in both F ∗

j1
and F ∗

j2
. Thus,

Fi ∩ Fi+1 ̸= ∅.
Condition (iv) of Definition 3.5 requires that a is nonconstant on Fi for all 1 ≤ i ≤ m − 1.

Suppose that there is some F ∗
i in the list F∗ on which a is constant. Then we claim that F ∗

i will be
deleted in the creation of the list F . Suppose for contradiction that F ∗

i is not deleted so

F ∗
i ̸⊆ F ∗

i+1 and F ∗
i ̸⊆ F ∗

i−1.

Since adjacent faces in F∗ must be comparable, we then have F ∗
i+1 ⊆ F ∗

i and F ∗
i−1 ⊆ F ∗

i . However,
this implies that

Φ−1(F ∗
i ) ⊆ Φ−1(F ∗

i+1) and Φ−1(F ∗
i ) ⊆ Φ−1(F ∗

i−1).

Because a is constant on F ∗
i , we know that a ∈ span(Φ−1(F ∗

i )). However, the inclusion above
implies that a ∈ span(Φ−1(F ∗

i+1)) and a ∈ span(Φ−1(F ∗
i−1)) as well. This contradicts condition

(iii) of Definition 4.1 because Φ−1(F ∗
i−1) is the cell before Φ−1(F ∗

i ) and Φ−1(F ∗
i+1) is the cell after

Φ−1(F ∗
i ). Hence, we conclude that the assumption was wrong and F ∗

i must be deleted in the
construction of F .

Lastly, we show that F satisfies condition (v): the face maximizing a on Fi is the face minimizing a
on Fi+1 for 1 ≤ i ≤ m−2. Since Fi and Fi+1 are in the list F , we know that a is nonconstant on these
faces as we argued above. This implies that a is not contained in span(Φ−1(Fi)) or span(Φ−1(Fi+1)).
Let Fi = F ∗

j1
and Fi+1 = F ∗

j2
for faces F ∗

j1
and F ∗

j2
of F∗. By condition (ii) of Definition 4.1, we
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know that E+ := F ∗
j1+1 is the maximum face of Fi and E− := F ∗

j2−1 is the minimum face of Fi+1.
Suppose for contradiction that E+ ̸= E−.

First, we consider any cell e such that φa,ψ(t0) ∈ e but a /∈ span(e). Let φa,c(t) be the straight
path at φa,ψ(t0). Since φa,c(t) is a great circle passing through a, any open subset of this path will
have a span containing a. Thus, e must not contain any open subset of φa,c(t) so φa,c(t) ∩ e is a
single point: φa,c(t0) = φa,ψ(t0). Since φa,c(t) is a connected continuous path, we see that the cell
below e and the cell above e must contain an open subset of φa,c(t). Hence a is contained in the
span of the cell below/above e.

By this argument, we know that a ∈ span(Φ−1(E+)) and a ∈ span(Φ−1(E−)). Let E++ be the
face after E+ and E−− be the face before E−−. By condition (iii) of Definition 4.1, a cannot be
contained in span(Φ−1(E++)) or of span(Φ−1(E−−)). But since E+ and E++ are comparable (resp.
E− and E−−) we must have E+ ⊆ E++ (resp. E−− ⊇ E−). Consider the ordering of the faces we
have so far.

F ∗
j1 ⊇ E+ ⊆ E++ . . . E−− ⊇ E− ⊆ F ∗

j2

In any case—if E++ = E−−, or if there is some other face between these—we will have some face
between F ∗

j1
and F ∗

j2
that is not contained in either of its adjacent faces. But this would imply that

F ∗
j1

= Fi and F ∗
j2

= Fi+1 are not adjacent faces in F , producing a contradiction. Hence, we must
conclude that the assumption was incorrect and E+ = E−. This proves that the maximum face of
Fi is the minimum face of Fi+1.

Therefore, we see that F satisfies all conditions in Definition 3.5 and so it is a cellular string.

This theorem shows that all pairs in C(P ) are essentially cellular strings on P . It is also true
that any given cellular string is represented by a pair (a, ψ) in C(P ). To see this, suppose we are
given some f -cellular string F = (F0, . . . , Fk). Then let a be the vector associated to f . For a face
Fi in F , let ei = Φ−1(Fi) be its corresponding cell of Sn−1 and we place a point in the interior of
ei. Since no faces of the cellular string—except possibly F0 and Fk—are vertices, all ei will be of
dimension < n − 1. Then, by properties of regular cell complexes, we can connect the point inside
ei to the point inside ei+1 by a continuous path contained inside a single n − 1-cell. The union of
these paths gives the path φa,ψ(t) from which we can derive the appropriate ψ.

We can now give C(P ) a cell decomposition according to the cellular string made by each pair.
For each cellular string F on P , we let

eF := {(a, ψ) ∈ C(P ) |∆(a, ψ) gives cellular string F}

be an open cell in this decomposition. The fact that each of these sets is an open cell and that this
creates a cell decomposition of C(P ) will be proved in a later paper.

Lemma 4.4. The set E = {eF} where F is a cellular string of P gives a cell decomposition on
C(P ). Furthermore, (C(P ),E ) is a CW complex.

Remember in Section 2 when we described the face poset of a polytope? That same construction
works for a general CW complex. If X is a CW complex, then its face poset, F (X), is the collection
of closed cells in X partially ordered by inclusion.

Consider the face poset of C(P ) with the cell decomposition E . Each element in F (C(P )) is a cell
corresponding with a unique cellular string. We claim that eF ⊆ eE if and only if E ⊆ F . This claim
will be proved in a later paper but follows from the conditions of comparability for cellular strings.
If we take it as true for now, then we see that F (C(P )) is exactly the mega Baues poset.15 Thus,

15The partial order is reversed in this instance, but that does not change the homotopy type of the poset.
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the order complex on F (C(P )) is the same as the order complex on Ω(P ). In order to complete our
translation of the mega Baues poset into C(P ), we need to know that the order complex on F (C(P ))
is homotopy equivalent to C(P ).

Theorem 4.5. The order complex on F (C(P )) is homotopy equivalent to C(P ).

This theorem is still awaiting proof. Barring unforeseen circumstances, it will be proved in a
later paper.

Corollary 4.6. C(P ) is homotopy equivalent to Ω(P ).

4.2 Explicit homotopy to UT (Sn−1)

We now consider the set of all straight paths in Λn.

{(a, c) ∈ Λn | c : [0, 1] → Sn−2 is a constant map}

More specifically, this is a subset of C(P ). That is, every straight path gives a cellular string.

Lemma 4.7. If P is an n-dimensional polytope and (a, c) ∈ Λn is a straight path, then (a, c) ∈ C(P ).

Proof. We show that (a, c) satisfies all three properties in Definition 4.1 for any polytope P . Let
Sn−1 have the cell decomposition given by N(P ). Also, let φa,c be denoted by φ.

Condition (i). Every cell in Sn−1 is convex16 because it is the intersection of the sphere with
a convex cone and the path φ(t) is also convex. The shortest path between any two points on the
sphere is contained in the great circle through both points. For two points in φ(t), this path is traced
out by φ(t). The intersection of two convex sets is also convex so, for any cell e of Sn−1, e ∩ φ(t) is
convex and, in particular, connected. Since φ is a continuous function, we conclude that

φ−1(e ∩ φ(t)) = φ−1(e)

is connected.
Next, we address condition (ii). Let t0 ∈ (0, 1) such that φ(t0) ∈ e and a /∈ span(e). Then,

because φ is the straight path at φ(t0), we know that the cell before e is the cell below e and the
cell after e is the cell above e.

Finally, consider condition (iii). Let t0 ∈ (0, 1) such that φ(t0) ∈ e and a ∈ span(e). First we
note that e must be more than 0-dimensional because no vertices of the cell decomposition (except
possibly a and −a) contain a in its span. Second, φ(t) must intersect e at more than a single
point. Otherwise span(e) would not contain any point of φ(t) except φ(t0) since φ is a straight
path.17 Thus, we have a straight line φ(t) intersecting a convex cell e of dimension ≥ 1 within the
plane of e. This implies that φ(t) must cross the boundary of e transversely in two places. Hence,
neither of those boundary cells can contain φ(t), or by extension a, in their spans. These boundary
cells are exactly the cells before and after e. Thus, (a, c) satisfies condition (iii) and we conclude
(a, c) ∈ C(P ).

16In relation to paths on the sphere.
17There is some sort of geometry argument here.
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Now that we know the set of straight paths is contained in C(P ), let’s take a closer look at these
straight paths. In choosing a pair (a, c), we pick a vector a ∈ Sn−1 and then pick a point c ∈ Sn−2

which stands for a direction away from a along the surface of the sphere. Hence, the set of straight
paths is exactly UT (Sn−1). For the last step in this investigation, we need to prove that there is a
deformation retraction from C(P ) to the set of straight paths. Our hope is to construct an explicit
homotopy for this which will appear in a later paper.

Theorem 4.8. C(P ) is homotopy equivalent to UT (Sn−1).

Once all the remaining proofs have been completed, Corollary 4.6 and Theorem 4.8 will together
provide a proof for the Conjecture 3.12 on page 15.
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