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1 Finite Surfaces and Homeomorphisms

1.1 Riemann surfaces
By the classification of surfaces, every connected, closed, orientable surface is either the sphere S2
or the connected sum of g tori for g ≥ 1 which we call Σg.1 Throughout this proposal, we will also
be working with surfaces with punctures or marked points: S2k and Σg,k will denote a surface with
k marked points/punctues.

A topological surface becomes a Riemann surface when we give it a complex structure. This is
an atlas of charts to C such that the transition maps are holomorphic. All closed orientable surfaces
have a complex structure. The sphere S2 can be identified with CP 1 which is covered by two charts.
For Σg with g ≥ 1, represent Σg as a 4g-gon with sides identified. If g = 1, we can tile C with a
grid of squares, inducing a complex structure on Σ1. If g ≥ 2, we can instead tile H2 with regular
4g-gons with 4g meeting around a vertex. We realize this with the Poincaré disk model by tiling D
with 4g-gons with sides made from circular arcs. Since D ⊂ C, this induces a complex structure on
Σg.

Definition 1.1 (Marked Complex Structure). A marked complex structure on a smooth surface
S is a pair (X,φ) where X is a Riemann surface and φ : S → X is an orientation-preserving
diffeomorphism.

Note that φ will also give a local complex structure in charts on S because we can pull back the
coordinate charts of X to be charts on S.

Definition 1.2. The Teichmüller space T (S) of a surface S is the set of marked complex struc-
tures (X,φ) up to an equivalence relation ∼. We say that (X1, φ1) ∼ (X2, φ2) if there exists a
biholomorphism ψ : X1 → X2 such that the following diagram commutes up to homotopy.

S X1

X2

φ1

φ2
ψ

Example 1.3. By the Uniformization Theorem, any complex structure on S2 is conformally equivalent
to CP 1. Automorphisms of CP 1 are Möbius transformations given by f(z) = az+b

cz+d for a, b, c, d ∈ C,
ad− bc ̸= 0. These are all isotopic to Id and so T (S2) is a point.

1We will occasionally denote S2 as Σ0.
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Figure 1: An example of a pants decomposition by 6 curves on Σ3.

The Uniformization Theorem says that every simply connected Riemann surface is conformally
equivalent to C, D, or CP 1. For a genus g Riemann surface X ∼= Σg, its universal cover is simply
connected and thus conformally equivalent to one of these three options. If g ≥ 2, then X̃ is
conformally equivalent to D. As a consequence of the Schwarz lemma, the conformal automorphisms
of D— given by the group PSL(2,R)— are exactly the isometries of D with the Poincaré hyperbolic
metric. This metric then descends via the covering map D → X to give a constant −1 curvature
metric on X. Thus, for each complex structure on Σg, there is a unique hyperbolic metric up to
isometry inducing that complex structure.

Proposition 1.4. The Teichmüller space T (Σg) for g ≥ 2 is in natural bijection with the set

{µ hyperbolic Riemannian metric on Σg}/isometry.

This other perspective allows us to put natural coordinates– called Fenchel-Neilson Coordinates–
on the Teichmüller space corresponding to lengths of certain simple closed curves in Σg.

Lemma 1.5 (Pants Decomposition). There are 3g − 3 simple closed curves {γi} on Σg such that
Σg \

⋃
i γi is homeomorphic to the disjoint union of three-holed spheres.

Once we have decomposed Σg into a collection of pairs of pants (three-holed spheres), we can
determine a hyperbolic metric on Σg by choosing a metric on each pair of pants such that they glue
up well.

Lemma 1.6. A hyperbolic metric on a pair of pants is determined by the lengths of the three
boundary components.

This fact follows by splitting the pair of pants in half to form two hyperbolic hexagons and then
applying some basic hyperbolic geometry. The boundaries of the pants will need to glue together by
isometries and this requires that matching curves are the same length; this gives 3g−3 dimensions of
freedom. Additionally, when we glue together the curves to form Σg, we can do so with any amount
of rotation about the γi. This adds an additional 3g − 3 dimensions of freedom.

Proposition 1.7. The dimension of T (Σg) over R is 6g − 6.

A theme of this proposal— and of all my mathematical interests— is the relationship between a
geometric structure on a manifold and its symmetry group. In this case, we will study symmetries
of hyperbolic metrics on Σg.

Definition 1.8 (hyperelliptic surface 1). A Riemann surface X ∼= Σg, g ≥ 2, is hyperelliptic if there
is an involution ι : X → X (i.e. an order 2 conformal automorphism) with 2g + 2 fixed points.

We can perform an Euler characteristic computation using the theory of orbifold Euler charac-
teristic to find that χ(X/ι) = 2. Since ι was orientation preserving, X/ι is connected, closed, and
orientable. Hence, it must be the sphere S2. This gives an equivalent definition of hyperelliptic
surfaces.
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Figure 2: A hyperelliptic involution ι and its corresponding branched covering qι on Σ2.

Definition 1.9 (hyperelliptic surface 2). A Riemann surface X ∼= Σg is hyperelliptic if it has a
two-sheeted holomorphic branched cover to S2 with 2g + 2 branch points.

Let S be a surface with marked points p1, . . . , pn. A complex orbifold structure on S is given
by a complex structure on S \ {p1, . . . , pn} such that at a marked point pi there is a neighborhood
which is conformally equivalent to the image of D under the map z 7→ zk for some k ≥ 2. The value
k is the order of the cone point.

The two-sheeted holomorphic branched cover X → X/ι ∼= S2 gives a correspondence between
complex structures on X which are symmetric with respect to ι and complex orbifold structures on
S2 with 2g + 2 order 2 cone points.{

hyperelliptic Riemann surfaces
X ∼= Σg

}
↔

{
complex structures on S22g+2

with order 2 cone points

}
Thus, the space of hyperelliptic Riemann surfaces of genus g is parameterized by T (S22g+2); this
gives a natural embedding of T (S22g+2) into T (Σg). The placement of the marked points in CP 1

induces such a complex orbifold structure on S2. Recall that Aut(CP 1) ∼= Möb ∼= PSL(2,C) and
this group acts transitively on triples of points in CP 1. Then the orbifold structure is determined
by the placement of (2g+2)− 3 = 2g− 1 points in CP 1. This gives dimR T (S22g+2) = 4g− 2 which
is also the dimension of the space of hyperelliptic surfaces of genus g.

1.2 Mapping class groups
The mapping class group of a surface is the group of orientation preserving homeomorphisms up to
homotopy.

MCG(Σg,k) = Homeo+(Σg,k)/ ∼

The equivalence classes of homeomorphisms in MCG(Σg,k) are called mapping classes. Multi-
plication of two mapping classes is given by the composition of representatives for each class, and
this is independent of choice. That is, if f1 ∼ f2 and g1 ∼ g2, then f1 ◦ g1 ∼ f2 ◦ g2. This shows
MCG(Σg,k) is a well-defined group.

Remark 1.10. Every homeomorphism on Σg,k is isotopic to a diffeomorphism [1]. We can then
equivalently define MCG(S) = Diffeo+(S)/ ∼ and always take a smooth representative.
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One very important example of a mapping class is a Dehn twist. For a simple closed curve
γ ∈ Σg,k we define [Tγ ] ∈ MCG(Σg,k). Let Tγ be the identity outside an annular neighborhood A
around γ. Give A a coordinate function to a complex annulus.

ϕ : A→
{
reiθ ∈ C

∣∣∣ 1 < r < 2, 0 ≤ θ < 2π
}

Then define a map twist on this complex annulus by

twist : reiθ 7→ reiθei(1−r)π.

And we define Tγ |A = ϕ−1 ◦ twist ◦ϕ. Note that twist is the identity on the boundary of the annulus
so Tγ is continuous. See Figure 3 for the action of twist .

Figure 3: The action of twist on the complex annulus.

Figure 4: A set of 2g + 1 simple closed curves on Σg. Dehn twists about these curves generate
MCG(Σg).

Proposition 1.11 (Dehn-Lickorish, Humphries [1], statement only). The mapping class group
MCG(Σg) for Σg, g ≥ 2, is finitely generated by 2g + 1 Dehn twists about simple closed curves.

The mapping class group acts on Teichmüller space. If ϕ : S → S is a diffeomorphism, and
(X,φ) is a complex structure on S, then (X,φ ◦ ϕ−1) is another marked complex structure on S.
This resulting complex structure is independent of the choice of diffeomorphism up to homotopy: if
we take ϕ and ϕ′ to be homotopic diffeomorphisms, then φ ◦ ϕ and φ ◦ ϕ′ will also be homotopic.
This gives a well-defined action MCG(Σg,k) ⟳ T (Σg,k).
Remark 1.12. The quotient T (Σg,k)/MCG(Σg,k) is called the moduli space of the surface denoted
Mg,k. This an orbifold of the same dimension as T (Σg,k). The cone points of Mg,k correspond to
Riemann surfaces with extra symmetry. Moduli spaces do play a key role in the larger story, but it
is not a focus for this paper.
Remark 1.13. So far, we have been discussing the mapping class group for general surfaces Σg,k.
Moving forward, we will focus specifically on closed surfaces Σg but a version of the following material
could be applied to surfaces with punctures.
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Figure 5: If γ is a symmetric curve with respect to ι, then Tγ is hyperelliptic. By restricting to an
annular neighborhood of γ and looking at the diagram, we find that Tγ descends to a half twist on

the quotient space (a disk with 2 marked points).

A hyperelliptic involution on a topological surface Σg is like the map ι referenced in Definition
1.8 but without necessarily preserving any conformal structure. We just require ι : Σg → Σg to be
an orientation-preserving homeomorphism and satisfy ι2 = Id with 2g + 2 fixed points.

Lemma 1.14. If ι1 and ι2 are two hyperelliptic involutions on Σg, then [ι1] and [ι2] are conjugate
in MCG(Σg).

In light of Lemma 1.14, we will fix one hyperelliptic involution on Σg and call it ι. The following
constructions are for this fixed ι but are conjugate to those for any other hyperelliptic involution.

Definition 1.15. A mapping class [f ] ∈ MCG(Σg) is hyperelliptic if there is a representative f
satisfying the equivalent conditions:

1. f commutes with ι up to homotopy;

2. f descends to a homeomorphism on Σg/ι.

Note that [Id] satisfies this definition and that if [f ] is hyperelliptic, then [f−1] is as well. Also,
the composition of two hyperelliptic mapping classes is also hyperelliptic. Thus, the collection of all
these mapping classes form a subgroup of MCG(Σg).

Definition 1.16. The hyperelliptic (or symmetric) mapping class group HMCG(Σg) is the subgroup
of MCG(Σg) containing all the hyperelliptic mapping classes.

Example 1.17. Suppose that γ is a simple closed curve in Σg such that ι(γ) = γ. Then Tγ commutes
with ι so [Tγ ] is hyperelliptic. This can be seen by restricting to an annular neighborhood of γ. See
Figure 5.
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Proposition 1.18. The fixed set under the action of [ι] on T (Σg) is the set of all hyperelliptic
surfaces for which ι is a conformal automorphism; we denote this hyp(Σg) ⊂ T (Σg). Further, the
action by HMCG(Σg) fixes hyp(Σg) as a set.

This proposition links the geometry in Section 1.1 with an algebraic structure, namely the map-
ping class group. Following Example 1.17, if a simple closed curve γ has a symmetric representative,
then Tγ is hyperelliptic. Consider the generators for MCG(Σg) in Figure 4. When g = 2, all the
generators have a symmetric representative. This means that for genus 2,

HMCG(Σ2) = MCG(Σ2).

However, when g ≥ 3, the curve a2 is the only generator with no symmetric representative. So for
g ≥ 3, HMCG(Σg) is strictly smaller than MCG(Σg).

2 Three-Manifolds
We now transition to studying manifolds of three dimensions. In Sections 2.2 and 3, we give a
three-manifold M extra structure by writing it as the disjoint union of surfaces– a foliation. We can
use the geometry of surfaces and their mapping class groups developed in the first section to help
us understand M .

If M and N are oriented 3-manifolds, their connected sum M#N is formed by removing a 3-ball
from each and gluing along the boundary sphere with an orientation reversing homeomorphism.
Note that if M and N are not homeomorphic to S3, then the gluing sphere is essential in M#N . A
3-manifold M is prime if whenever M = A#B, either A ∼= S3 or B ∼= S3.

The Prime Decomposition Theorem of Kneser and Milnor says that every compact 3-manifold
M can be written as M = M1#M2# . . .#Mn where each Mi is prime. This is unique up to
homeomorphism of the Mi and permutation of the pieces.

Definition 2.1 (Irreducible). A 3-manifold M is irreducible if every embedded S2 ↪→M bounds an
embedded ball.

Notice that if M is irreducible, then M is also prime. On the other hand, M = S2×S1 is the only
prime manifold which is not irreducible. Moving forward, we will often require that M is irreducible.
This is because the theorems we state are often simple in the case M = S2 × S1. Then, once we
understand all prime 3-manifolds, we can use prime decomposition to understand all 3-manifolds.

2.1 Thurston norm
Suppose that M is an irreducible, oriented, compact 3-manifold with incompressible boundary (i.e.
π1(∂M) → π1(M) is an injection). Let S ↪→ M be a two-sided properly embedded surface and let
{Si} be the set of connected components of S which are not homeomorphic to S2 or D2. We define

χ−(S) :=
∑
i

χ(Si)

Note that [S] = [∪iSi] in H2(M,∂M ;Z); this follows because M is irreducible with incompressible
boundary so every embedded sphere is contractible and thus 0 in homology.

Lemma 2.2 (Embedded Surface [2]). Let M be a compact two-sided 3-manifold. Every class α ∈
H2(M,∂M ;Z) is represented by [S] where S is an oriented compact surface properly embedded in
M .
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Lemma 2.2 allows us to define a map ∥·∥ : H2(M,∂M ;Z) → R given by

∥α∥ = min{−χ−(S) | [S] = α}.

This is the first step in defining the Thurston norm which is a norm on the vector spaceH2(M,∂M ;R).

Proposition 2.3 (Semi-norm). The map defined above on H2(M,∂M ;Z) is a semi-norm. That is,
it satisfies the following properties.

1. ∥α∥ ≥ 0 for all α ∈ H2(M,∂M ;Z)

2. ∥kα∥ = |k|∥α∥ for all k ∈ Z

3. ∥α+ β∥ ≤ ∥α∥+ ∥β∥ for all α, β ∈ H2(M,∂M ;Z)

Proof sketch. –

1. By definition, χ−(S) ≤ 0 for all S since all spherical and disk components have been excluded.
Thus, ∥α∥ ≥ 0.

2. Let S be a surface with ∥α∥ = −χ−(S). We can represent kα by |k| parallel copies of S. This
gives ∥kα∥ ≤ |k|∥α∥. For the other inequality, we can always find a smooth map f : M → S1

such that f−1(0) = S. Then we can lift f to the |k|-fold cover of S1 by the lifting criteria. If
f̂ is the lifted map, this implies that f̂−1(0) consists of |k| disjoint copies of S. Thus, every
surface representing kα must be in this form and ∥kα∥ = |k|∥α∥.

3. We represent α and β with Thurston-norm minimizing surfaces S and T . We can assume
these are incompressible surfaces which intersect in minimal position. Using a cut and paste
argument while preserving Euler characteristic, we can modify S ∪ T to obtain a properly
embedded surface representing [α+ β]. This gives an upper bound on ∥α+ β∥.

A manifold M is atoroidal if there are no essential tori in M (i.e. no embedded non-boundary
parallel incompressible tori). A manifold with boundary is acylindrical if its double is atoroidal.

Proposition 2.4. If M is atoroidal (and acylindrical if ∂M ̸= ∅), then ∥·∥ is positive definite so it
is a norm. That is, ∥α∥ = 0 if and only if α = [0] in homology.

Proof for M without boundary. Suppose that ∥α∥ = 0 and α is represented by an incompressible
surface S with ∥α∥ = −χ−(S). Let {Si} be the non-spherical connected components of S so that
χ−(S) =

∑
i χ(Si) = 0. Note that χ(Si) ≤ 0 for each component Si since Si is not S2. Hence,

we conclude that χ(Si) = 0 for all components Si. Since S is orientable, all components must be
tori and S is the disjoint union of tori. However, M is atoroidal so S must be compressible. Thus,
α = [0].

We extend ∥·∥ to H2(M,∂M ;R) by first extending to homology classes with rational coefficients
by using Proposition 2.3 part (2). Then we use the convexity in Proposition 2.3 part (3) and limiting
sequences to define ∥α∥ for all α ∈ H2(M,∂M ;R). By Lefschetz Duality, H2(M,∂M ;R) ∼= H1(M ;R)
so we can think of ∥·∥ as a norm on first cohomology. Then we can associate φ ∈ H1(M ;R) with a
1-form µ in H1

dR(M ;R) such that φ(γ) =
∫
γ
µ for all closed curves γ. This µ will always be a closed

form because φ(γ) = φ(γ′) for [γ] = [γ′] in H1(M ;R).
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Proposition 2.5. Let φ ∈ H1(M ;R) and µ be the 1-form such that φ(γ) =
∫
γ
µ for all closed curves

γ. Then µ is non-singular if and only if M fibers over the circle with fiber S such that ∥φ∥ = −χ(S).

Proof. Suppose M fibers over the circle with fibration f : M → S1 and fiber S which is Thurston-
norm minimizing in its homology class. Then we can take µ = f∗dθ and this is the desired 1-form.

On the other hand, suppose there is such a 1-form µ with φ(γ) =
∫
γ
µ. Let {γi} be the (finitely

many) generators of π1(M). Then we perturb µ while keeping it non-singular so that
∫
γi
µ ∈ Q

for all generators γi. Let N be a large integer so that
∫
γi
µ = ki

N for all γi. Then µ′ = Nµ is
also non-singular and

∫
γi
µ′ ∈ Z for all generators γi. Then we fix some x0 ∈ M and define a map

f :M → R/Z by

f(x) =

(∫ x

x0

µ′
)
/Z.

This map is well-defined since f(x) is independent of path because
∫
γ
µ′ ∈ Z for all closed curves γ.

We can see that f is indeed a fibration by applying Ehresmann’s theorem since f is a submersion
and M is compact.

Now observe that H2(M,∂M ;R) ∼= Rb2 where b2 is the second betti number. Then we have a
lattice of integral homology classes Zb2 ⊂ H2(M,∂M ;R). Note that ∥·∥ is an integer on all these
lattice points. This allows us to use the following fact: if a norm on Rd takes on integer values on
Zd, then the unit ball is a finite-sided polyhedron.

Theorem 2.6 (Thurston [3]). The unit ball B∥·∥ in H2(M,∂M ;R) with respect to the Thurston
norm ∥·∥ is a finite-sided polyhedron.

Proposition 2.7 (statement only). The set C of non-singular closed 1-forms is the union of cones
over faces of B∥·∥ in H1

dR(M ;R).

Example 2.8 (Whitehead Link). Let W be the whitehead link with link components ℓ1 and ℓ2 and
let M = S3 \W . Then we note that

H2(M,∂M ;Z) ∼= H1(M ;Z) ∼= Hom(H1(M ;Z),Z) .

Note that H1(M ;Z) is generated by the homology classes of two curves γ1 and γ2 linking with ℓ1
and ℓ2 respectively. So H1(M ;Z) ∼= Z2 and Hom(H1(M ;Z),Z) is determined by where it sends
these generators. This gives H2(M,∂M ;Z) ∼= Z2 and it is generated by α1 and α2 where αi is the
class of surfaces with ℓi as a boundary.

We can find explicitly a surface Si ∼= T 2 \ {disk} with ℓi as a boundary as shown in Figures 6a
and 6b. We calculate

∥αi∥ ≤ −χ(Si) = 1.

There is no orientable surface with one boundary component and Euler characteristic 0; this means
∥αi∥ ≠ 0. Hence, α1 and α2 both lie on the unit ball B∥·∥. Next consider the class α1 + α2. By
convexity, we know

∥α1 + α2∥ ≤ ∥α1∥+ ∥α2∥ = 2.

A surface with two boundary components has an even Euler characteristic. So either ∥α1 +α2∥ = 0
and there is an annulus with ℓ1 ∪ ℓ2 as a boundary, or ∥α1+α2∥ = 2. This first case cannot happen.
By applying this same argument to α1 − α2 and then scaling by 1

2 we obtain four more points on
B∥·∥. Since the unit ball is a finite sided convex polytope, we have determined it to be the square
with vertices ±(1, 0) and ±(0, 1).
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(a) (b)

Figure 6: The complement of the Whitehead link with two embedded surfaces with minimal genus
in their homology class. Both surfaces are T 2 \ {disk}.

2.2 3-Manifolds fibering over S1

In this section, we will examine a rich family of 3-manifolds called mapping tori. A mapping torus
is constructed by a homeomorphism f on a surface. We will see how the algebraic properties of f
in MCG(S) give specific geometric structure to its mapping torus.

Definition 2.9 (Mapping torus). Let f : S → S be an orientation preserving homeomorphism of
an oriented surface S. The mapping torus Mf of f is

Mf := S × [0, 1]
/
(x, 1) ∼ (f(x), 0).

A mapping torus Mf naturally fibers over the circle with the map F (x, t) = t and fiber F−1(t) ∼=
S. Not only do mapping tori fiber over the circle, but the converse is also true. If M is a fiber
bundle over the circle, it must be a mapping torus. Let the fibering F :M → S1 have a monodromy
given by a homeomorphism f : F−1(0) → F−1(0). By definition, M ∼=Mf .

Mapping tori provide a nice invariant for members of the mapping class group of a finite surface
Σg. If [f ] = [h] in MCG(Σg), thenMf

∼=Mh with a homeomorphism preserving the fibration. In fact,
this is also true if [f ] and [h] are conjugate in MCG(Σg). However, there do exist non-conjugate
mapping classes [f ] and [h] such that Mf

∼= Mh, but the homeomorphism will not preserve the
fibration.

By looking a little closer at the different types of homeomorphisms on Σg, we can learn more
about these mapping tori.

Theorem 2.10 (Neilson-Thurston Classification, statement only). Let f : Σg → Σg be a homeo-
morphism. Then f is homotopic to some homeomorphism g such that either

1. g is finite order: there is some k ≥ 0 such that gk = Id;

2. g is reducible: there is a nonempty collection of isotopy classes of disjoint essential simple
closed curves {ci} such that {g(ci)} = {ci};

3. g is pseudo-Anosov: there is a pair of transverse measured singular foliations (Fu, µu) and
(Fs, µs) and λ > 1 such that

g · (Fu, µu) = (Fu, λµu) and g · (Fs, µs) = (Fs, λ−1µs).
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Examples of homeomorphisms of type (1) and (2) in Theorem 2.10 are readily available. The
hyperelliptic involution in Figure 2 has order 2. To construct a reducible homeomorphism, let
γ1, . . . γk be disjoint simple closed curves in Σg. Then the composition of Dehn twists Tγ1 ◦ · · · ◦ Tγk
is reducible because each γi is fixed by this homeomorphism.

Pseudo-Anosov homeomorphisms are more elusive. First, we consider Anosov homeomorphisms
on the torus. Such a map g : T 2 → T 2 is characterized by the existence of a pair of transverse
measured (non-singular) foliations (Fu, µu) and (Fs, µs) and λ > 0 satisfying the same criteria as
in (3) of Theorem 2.10. Any matrix A ∈ SL(2,Z) with |trA| > 2 will satisfy this condition; the two
sets of lines parallel to the eigenspaces will be the foliations. Then we construct a branched covering
Σg → T 2 branched over fixed points of A. We can lift the Anosov map on T 2 to a pseudo-Anosov
map on Σg. The singular foliations will be the lift of the foliations on T 2.

Theorem 2.11 (Thurston, statement only). Let [f ] ∈ MCG(Σg) with g ≥ 2. Let Mf be the mapping
torus. Then,

1. if f is finite order, Mf is finitely covered by Σg × S1 and has geometry H2 × E;

2. if f is reducible then Mf contains an embedded essential torus. We can cut along this torus to
decompose Mf into a mapping tori of a surface with boundary;

3. f is pseudo-Anosov if and only if Mf is hyperbolic.

Theorem 2.10 and 2.11 together allow us to always put a geometry on Mf so that the fibers
Σg × {t} are hyperbolic. In the case where f is pseudo-Anosov, we can find a hyperbolic metric on
the whole manifold Mf .

3 Taut Foliations
Definition 3.1 (taut foliation). A co-oriented foliation F of a 3-dimensional M by surfaces is taut
if there is a closed oriented transversal intersecting every leaf of F .

Example 3.2. The foliation F of a mapping torus Mf comprised of leaves Σg×{t} is a taut foliation.
Take the path x × [0, 1] for some x ∈ Σg. Then add in a path between the endpoints (x, 0) and
(f(x), 0) lying in the leaf Σg × {0} to obtain a closed curve γ. We can perform a homotopy on γ to
make it transverse to every leaf of F . Since f is an orientation-preserving homeomorphism, we can
assign a co-orientation to this transversal.

There are many different equivalent formulations of a taut foliation; each is useful in a different
context. We list a few which are most relevant to us but a more extensive list can be found in [2].
Number (6) in Proposition 3.3 will be of primary importance.

Proposition 3.3 (Equivalent definitions of tautness). The following are equivalent conditions for
F on M3 being a taut foliation.

1. For every point p ∈M , there is an immersed circle transverse to F passing through p.

2. There is no proper closed submanifold N of M whose boundary is tangent to F and for which
the co-orientation points in to N along ∂N .

3. There is a closed 2-form ω on M positive on TF .

4. There is a flow X transverse to F which is volume preserving for some Riemannian metric on
M .
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(a) The shift map σ on S. The pink points
represent one orbit under iteration by σ.

(b) A heuristic picture of Mσ for the shift
σ on the ladder surface which gives an

example of a depth 1 foliation.

Figure 7

5. There is a Riemannian metric on M for which every leaf of F is a minimal surface.

6. There is a map f :M → S2 whose restriction to each leaf λ is a branched covering.

Definition (6) is the main formulation that we will use in this paper. There are two analytic
proofs that this is equivalent to Definition 3.1: one generalizing Poincaré’s classical construction of
meromorphic functions on Riemann surfaces and the other follows a route with Eliashberg-Thurston,
contact stuructures, and symplectic 4-manifolds, applying Donaldson’s Theorem. In [4], Calegari
gives a two combinatorial proofs. One of these constructs Belyi maps from a dual to a Voroni
tesselation.

Proposition 3.4. An embedded, oriented, closed surface S ↪→ M is Thurston norm minimizing if
and only if it is the compact leaf of a taut foliation on M .

The proof of the backwards direction of this proposition (compact leaf of taut foliation ⇒
Thurston norm minimizing) uses the Euler class of the foliation e(F). It follows from the inequal-
ity |e(F)[S]| ≤ |χ−(S)| for all embedded, oriented, closed surfaces S and the fact that equality is
achieved when S is a compact leaf of F .

The forward direction (Thurston norm minimizing ⇒ compact leaf of a taut foliation) is a
theorem of Gabai [5]. The proof proceeds by decomposing M along Thurston norm minimizing
surfaces to obtain taut sutured manifold pieces. Since taut sutured manifolds have finite hierarchies,
this procedure will terminate. Then the pieces of the decomposition can be foliated with non-
compact leaves and the decomposing surfaces are compact leaves of the resulting foliation. This
extensive argument involves developing the theory of sutured manifolds and I will not give the proof
in my exam.

3.1 Finite depth foliations and big mapping tori
Definition 3.5. Compact leaves of a foliation are are depth 0. A leaf λ is depth k if λ is a union of
depth k − 1 leaves. A foliation is depth k if all leaves are depth ≤ k.

In this proposal, we will only be discussing depth 0 and depth 1 foliations. For a picture for a
depth 1 foliation, one should imagine a Z cover of a finite surface Σg spiraling around and converging
to Σg. A schematic is shown in Figure 7b. To construct a depth 1 foliation explicitly, we can take
a homeomorphism on an infinite-type surface and build its corresponding mapping torus.
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Example 3.6 (A shift on a ladder). Let S be a ladder surface. This can be defined as a cylinder
S1 × R with a handle attached from S1 × {n} to S1 × {n + 1} for all even integers n. Or define S
as a Z-cover of Σ2. See Figure 7a.

Then we define a shift map σ : S → S as a homeomorphism which shifts the handle based at
n to the handle based at n + 2. In Figure 7a, the pink points represents one orbit under σ. The
shift map σ has one repelling end on the left of S and one attracting end on the right. We form the
mapping torus in the same way as with finite-type surfaces.

Mσ := S × [0, 1]
/
(x, 1) ∼ (σ(x), 0)

Then Mσ is a non-compact 3-manifold foliated by S × {t}. We give it a natural compactification
Mσ.

Consider the set of all escaping rays γ in Mσ. We will call two rays γ1 and γ2 equivalent if
they agree outside of a compact subset of Mσ. For each equivalence class of escaping rays, add in
a point of ∂Mσ. In the result, we add on two genus 2 surfaces— one for the repelling end and one
for the attracting end. See Figure 7b. The foliation F of Mσ consists of all non-compact leaves
homeomorphic to S and the two compact Σ2 leaves; F is an example of a depth 1 foliation. The
compact boundary leaves are Thurston norm-minimizing by Proposition 3.4.

Remark 3.7. Above we describe the shift map by one genus. We could also define σk on the ladder
surface analogously as a shift map by k genera.

We now generalize the construction in Example 3.6.

Definition 3.8. A surface S is of infinite-type if its fundamental group is infinitely generated. An
end of an infinite-type surface is an equivalence class of exiting sequences: a sequence of connected
open sets {Un}n∈N satisfying

1. Un ⊂ Um if n > m;

2. Un is not compact for any n;

3. Un has compact boundary for all n;

4. any compact subset K of S is contained in finitely many Un’s.

Two exiting sequences {Un} and {Vn} are equivalent if there are i, j ∈ N and i′, j′ ∈ N such that
Ui ⊂ Vj and Ui′ ⊃ Vj′ . An end is accumulated by genus if it has no exiting sequence {Ui} where Ui
is eventually homeomorphic to a cylinder for large i.

Definition 3.9. A homeomorphism f on an infinite-type surface S is end-periodic if outside of a
compact subset K of S, f acts by a shift map.

Definition 3.10. Let f be an end-periodic homeomorphism on an infinite-type surface S. The
compactified mapping torus Mf is Mf as in Example 3.6 with a boundary component E/f for each
end E. The natural foliation F on Mf is given by the collection of non-compact leaves S×{t} along
with the compact leaves E/f .

Proposition 3.11 (statement only). Let M be a compact 3-manifold with a depth 1 foliation F .
Then M can be dissected into pieces along compact leaves of F so that each piece is foliated as Mf

so some end-periodic homeomorphism on an infinite-type surface.
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Proposition 3.11 reveals why we focus on compactified mapping tori of infinite type surfaces:
these are essentially all depth 1 foliations. Very little in known about the group of end-periodic
homeomorphisms on infinite-type surfaces. We hope the connection between algebraic properties of
an end-periodic [f ] ∈ MCG(S) and the geometric properties of the foliated 3-manifold Mf will help
us learn more about both objects. In particular, following Proposition 3.3 part (6), we are interested
in the minimum complexity of the leafwise branched covering map on Mf and whether this reflects
some measure of complexity of an end-periodic homeomorphism f .
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